• 0 Posts
  • 21 Comments
Joined 5 months ago
cake
Cake day: February 10th, 2024

help-circle
  • A standard called SystemReady exists. For the systems that actually follow its standards, you can have a single ARM OS installation image that you copy to a USB drive and can then boot through UEFI and run with no problems on an Ampere server, an NXP device, an Nvidia Jetson system, and more.

    Unfortunately it’s a pretty new standard, only since 2020, and Qualcomm in particular is a major holdout who hasn’t been using it.

    Just like x86, you still need the OS to have drivers for the particular device you’re installing on, but this standard at least lets you have a unified image, and many ARM vendors have been getting better about upstreaming open-source drivers in the Linux kernel.


  • To the contrary, I would expect the sample to skew more towards people who have a heavily customized X session and strong opinions about window managers while drastically underrepresenting average GNOME users who stick with the default Wayland session. Someone who likes their custom setup can still be waiting for a Wayland equivalent while casual Ubuntu users have been defaulted to Wayland on new non-nvidia installs since early 2021.




  • For years I’ve been using KeepassXC on desktop and Keepass2Android on mobile. Rather than sync the kdbx file between my devices, I have each device access it through the network. Either via sftp, smb, or nfs, but regardless I need to connect to my home’s VPN to access it when away from home since I don’t directly expose those things to the outside world.

    I used to also keep a second copy of the website-tied passwords in Firefox Sync, but recently tried migrating that to Proton Pass because I thought the PIN feature might help, then ultimately decided to move away from that too and start using the KeepassXC-Browser plugin instead. I considered Bitwarden too but haven’t tried it out yet, was somewhat deterred by seeing people say its UI seems very outdated.


  • There’s only one case I’ve found where Wi-Fi use seems acceptable in IoT: ESPHome. It’s open-source firmware for microcontrollers that makes DIY IoT sensors and controls accessible over LAN without phoning home to whatever remote server, without trying to make anything accessible over the Internet, and without breaking in any way if the device has no route to the Internet.

    I still wouldn’t call Wi-Fi use ideal even there; mesh can help in larger homes and Z-Wave/Zigbee radios tend to be more power efficient, though ESP32 isn’t exactly suited for a battery-powered device that’s expected to run 24/7 regardless.


  • That’s strange. As far as I can tell from any web searches, every version Windows still defaults to storing local time to the hardware clock and there are no reports of that changing with an update, nor is there any exposed setting control to configure this behavior outside of regedit. If you’re curious enough, you can check the current setting in the registry at HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\TimeZoneInformation. Windows maintains the current time as UTC if and only if the RealTimeIsUniversal key is present and nonzero.

    I expect it’s more likely some other issue would make the BIOS display an hour that’s inconsistent with your local timezone. For example, maybe a bug in the BIOS, maybe a timezone offset setting within the BIOS, or maybe a dead clock battery.


  • Unix time is far less universal in computing than you might hope. A few exceptions I’m aware of:

    • Most real-time clock hardware stores datetime as separate binary-coded decimal fields representing months, days, hours, minutes, and seconds as one byte each, and often the year too (resulting in a year 2100 limit).
    • Python’s datetime, WIN32’s SYSTEMTIME, Java’s LocalDateTime, and MySQL’s DATETIME similarly have separate attributes for year, month, day, etc.
    • NTFS stores a 64-bit number representing time elapsed since the year 1601 in 100-nanosecond resolution for things like file creation time.
    • NTP uses an epoch of midnight 1900-01-01 with unsigned seconds elapsed and an unusual base-2 fractional part
    • GPS uses an epoch of midnight 1980-01-06 with a week number and time within the week as separate values.

    Converting between time formats is a common source of bugs and each one will overflow in different ways. A time value might overflow in the year 2036, 2038, 2070, 2100, 2156, or 9999.

    Also, Unix time is often managed with a separate nanoseconds component for increased resolution. Like in C struct timespec, modern *nix filesystems like ext4/xfs/btrfs/zfs, etc.


  • as soon as the BIOS loaded and showed the time, it was “wrong” because it was in UTC

    Because you don’t use Windows. Windows by default stores local time, not UTC, to the RTC. This behavior can be overriden with a registry tweak. Some Linux distro installer disks (at least Ubuntu and Fedora, maybe others) will try to detect if your system has an existing Windows install and mimicks this behavior if one exists (equivalent to timedatectl set-local-rtc 1) and otherwise defaults to storing UTC, which is the more sane choice.

    Storing localtime on a computer that has more than one bootable OS becomes a particularly noticable problem in regions that observe DST, because each OS will try to change the RTC by one hour on its first boot after the time change.


  • Yes.

    My home server has dropbear-initramfs installed so that after reboot I can access the LUKS decryption prompt over SSH. The one LUKS partition contains a btrfs filesystem with both rootfs and home as subvolumes. For all the other drives attached to that system, I use ZFS native encryption with a dataset that decrypts with a keyfile from that rootfs and I have backups of an encrypted copy of that keyfile.

    I don’t think there’s a substantial performance impact but I’ve never bothered benchmarking.



  • Stylus/handwriting oriented note taking. Stuff like Samsung Notes or Goodnotes (or OneNote, though it does a lot more) in the Android space, or e-ink options like Remarkable’s stock software.

    If I just want to use a keyboard for everything I have great FOSS options like Joplin and Standard Notes, but when I want to use a pen instead it feels like no other freedom-respecting option seem to even remotely approach the usability of just sticking with real ink and moleskine-like paper notebooks.

    Even someone willing to pay an upfront fee for proprietary apps will struggle to find good options that allow syncing and reading (let alone editing) your notes on other devices/platforms without resorting to a monthly subscription.


  • Something I’ve noticed that is somewhat related but tangential to your problem: The result I’ve always gotten from using compose files is that container names and volume names get assigned names that contain a shared prefix by default. I don’t use docker and instead prefer podman but I would expect both to behave the same on this front. For example, when I have a file at nextcloud/compose.yml that looks like this:

    volumes:
      nextcloud:
      db:
    
    services:
      db:
        image: docker.io/mariadb:10.6
        ...
      app:
        image: docker.io/nextcloud
        ...
    

    I end up with volumes named nextcloud_nextcloud and nextcloud_db, with containers named nextcloud_db and nextcloud_app, as long as neither of those services overrides this behavior by specifying a container_name. I believe this prefix probably comes from the file-level name: if there is one and the parent directory’s name otherwise.

    The reasons I adjust my own compose files to be different from the image maintainer’s recommendation include: to accommodate the differences between podman and docker, avoiding conflicts between the exported listen ports, any host filesystem paths I want to mount in the container, and my own preferences. The only conflict I’ve had with other containers there is the exported port. zigbee2mqtt, nextcloud, and freshrss all suggest using port 8080 so I had to change at least two of them in order to run all three.


  • I have configured custom Android kernel builds to enable more USB drivers, enable module support, and tweak various other things. For one tangible example of the result: I could plug in a USB Wi-Fi adapter and use it to simultaneously connect to another Wi-Fi network with the internal NIC while also sharing my own AP over USB. On an Android device of all things. I have also adjusted kernel builds for SBCs (like Pi clones) to get things working at all.

    I have never seen any reason to configure a custom kernel for my own desktop/laptop systems. Default builds for the distros I’ve used have been fine for me; if I’m ever dissatisfied with anything it’s the version number rather than the defconfig. The RHEL/Rocky kernel omits a few features I want (like btrfs) but I’d rather stick to other distros on personal systems than tweak a distro that isn’t even meant for tweaking.



  • I’ve long known about it. I don’t seriously use it, but I would if only my Wi-Fi router was fully supported. It’s an Asus one (that I got for free from T-Mobile a decade ago) so I installed Asuswrt-Merlin on it instead.

    Following the recommendation of homelab communities, I got into OpnSense (a BSD-based firewall system for x86 hardware only) last year, still keeping my Wi-Fi router as a dedicated AP. In hindsight I somewhat regret that choice and probably would’ve been better off buying a new OpenWRT-compatible router and using it to handle firewall/routing/AP all in one device instead of wasting the power draw of another separate N100 system. I like having wireguard and vnstat in my router now, which Merlin didn’t offer, but I know OpenWRT has those too and I don’t have any other needs that warrant a higher-power router.


  • I’ve been using it since it felt usable enough in GNOME to me. Around 2015-ish, give or take a year. GNOME leading on Wayland support is a big part of why I switched to it from Xfce back then. Nowadays KDE and others have plenty good Wayland support too (better in some ways like allowing server-side decorations and global shortcuts) but I just haven’t felt like trying to properly experiment to see what I like.

    I’ve always avoided Nvidia on my desktops. Stuck with either radeon or intel and never had any exceptionally big issues with them on Wayland. Though other things like hardware accelerated video decoding have had a history of being spotty on some drivers/GPUs.



  • Debian. I was in a similar boat to OP and just a couple weeks ago migrated my almost 8-year-old home server setup from Ubuntu LTS to Debian Stable. Decided to finally move away from Ubuntu because I never cared for snap (had to keep removing it with every upgrade) and gradually gained a few smaller issues with Ubuntu. Seems good to me so far.

    I considered RHEL/Rocky but decided against them largely because I wanted btrfs for my rootfs, which their stock kernel doesn’t have, though I use a few Red Hat developed tools like podman and cockpit. Fedora Server and the like have too fast a release lifecycle for my liking, though I use Fedora for my desktop. That left Debian as the one remaining obvious choice.

    I also briefly considered throwing a Debian VM into TrueNAS Scale, since I also use this system as a ZFS NAS, but setting that up felt like I was fighting against the “appliance” nature of what TrueNAS tries to be.